Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Marcel Schlaf,* Robert W. Jordan and William Tam

Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario,
Canada N1G 2W1

Correspondence e-mail: mschlaf@uoguelph.ca

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in main residue
R factor $=0.043$
$w R$ factor $=0.120$
Data-to-parameter ratio $=17.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-Ethoxy-7-methoxycarbonyl-4-phenyltricyclo[4.2.1.0 ${ }^{2,5}$]non-3-ene

The regio- and stereochemistry of the title compound, $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$, has been established by X-ray analysis. The molecular dimensions are normal.

Received 9 April 2002
Accepted 7 May 2002
Online 17 May 2002

Comment

Recently, we reported the first examples of remote substituent effects on ruthenium-catalyzed $[2+2]$ cycloaddition reactions between 2 -substituted 5 -norbornenes and unsymmetrically substituted alkynes (Jordan \& Tam, 2000). Four different regio- and stereoisomers could be formed in the cycloadditions. When the substituent of the norbornene was an endo COOMe group, two regioisomers were obtained in a ratio of $2: 1$. These regioisomers were separated by fractional recrystallization. The regio- and stereochemistry of the major isomer, (I), was established by single-crystal X-ray diffraction analysis.

(I)

Experimental

Addition of endo-2-methoxycarbonyl-5-norbornene and ethyl 3phenylpropiolate to $\mathrm{Cp} * \mathrm{RuCl}(\mathrm{COD})$ (COD is $1,4-$ cyclooctadiene) in thf at 298 K yielded two regioisomers in a ratio of 2:1. Fractional recrystallization in an ethyl acetate/hexanes (1:4) mixture afforded the major regioisomer, (I). Suitable crystals were grown from an ethyl acetate/hexanes (1:4) mixture.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4} \\
& M_{r}=326.38 \\
& \text { Monoclinic, } P_{1} / c \\
& a=12.842(8) \AA \\
& b=9.831(8) \AA \\
& c=18.063(6) \AA \\
& \beta=131.44(2) \\
& V=1709.5(18) \AA^{3} \\
& Z=4
\end{aligned}
$$

Figure 1
A view of (I). Displacement ellipsoids are drawn at the 30% probability level.

Data collection

Enraf-Nonius CAD-4	$\theta_{\max }=27.5^{\circ}$
\quad diffractometer	$h=-16 \rightarrow 16$
$\theta / 2 \theta$ scans	$k=-12 \rightarrow 0$
4180 measured reflections	$l=-23 \rightarrow 15$
3909 independent reflections	3 standard reflections
2433 reflections with $I>2 \sigma(I)$	frequency: 120 min
$R_{\text {int }}=0.010$	intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.121$
$S=1.00$
3909 reflections
220 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0662 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0112(16)
\end{aligned}
$$

The H atoms were all located in difference maps and were refined as riding atoms ($\mathrm{C}-\mathrm{H} 0.93-0.98 \AA$). The methyl H atoms on C 72 were obviously disordered and these were modelled as six halfoccupancy H atoms spaced at 60° intervals. The methyl H atoms on C33 were not disordered and were allowed to rotate freely around the $\mathrm{C}-\mathrm{C}$ bond.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992); cell refinement: CAD-4-PC Software; data reduction: HELENA/ PLATON/System S (Spek, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON; software used to prepare material for publication: SHELXL97.

The authors thank G. Ferguson for help with the preparation of the CIF.

References

Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Jordan, R. W. \& Tam, W. (2000). Org. Lett. 2, 3031-3034.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2001). PLATON. January 2001 version. University of Utrecht,
The Netherlands.

